15,697
edits
Changes
no edit summary
====Early Developments====
The early history of AI can be traced to the intellectual foundations developed in the mid to late 1st millennium BCE. During this time, in Greece, India, China, Babylonia, and perhaps elsewhere philosophers and early mathematicians began conceptualizing artificial devices that can learn and perform tasks and calculations. Both Aristotle and Euclid reasons that through syllogism, that is a deductive logic-based argument, a mechanical device can be taught to perform given tasks. If a given statement was known or understood, that something created can learn or determine how to derive a conclusion. Effectively, logic can be taught to artificial devices. While such philosophers reasoned this possibility, they understood that capabilities to allow this was not as easy, even if they reasoned it was possible. Al-Khwarizmi, in the 8th and 9th centuries CE, and who's name became the basis for the term <i>algorithm</i>, developed rules and foundations in what became algebra. He derived linear and quadratic equations during his time in Baghdad as the lead mathematician and astronomer in the House of Wisdom, devised that many calculations could be automated through a mechanical device. The Spanish philosopher Ramon Llull also developed the idea machines could perform simple logical tasks that can be repeated and produced so that tasks could be accomplished in an automated way.<ref>For more intellectual foundations for AI, see: O’Regan, Gerard. 2008. <i>A Brief History of Computing</i>. London: Springer.</ref> Gottfried Wilhelm Leibniz developed these ideas as he was, along with Isaac Newton, laying the foundations to what became modern calculus in the 17th century. Taking ideas from Llull, and working with engineers, Wilhem was able to help develop a basic machine that can accomplish simple calculations, or what became a sort of calculator (Figure 1). The machine was able to add, subtract, multiply, and divide. This became known as the stepped reckoner, a mechanical device that through changes in gears within the device was able to conduct basic calculations. Thomas Hobbes and René Descartes also saw that logic and mathematical reasoning could be used to automatically determine solutions for problems if a given position proved true or not. They also theorized that an algorithmic, automated approach could potentially be able to determine arguments and determine the validity of an argument using reason or mathematical logic. Key developments during this time was a physical symbol system, that became also the basis for mathematical symbols used in algorithmic presentation today, developed. This provided the mathematical and logic foundations for presenting algorithms, along with a way to standardize their expression, that later developed AI's presentation in discussing theoretical insight.<ref>For more on the early history of algorithms and mathematical logic that created concepts of AI, see: Nilsson, Nils J. 2010. <i>The Quest for Artificial Intelligence: A History of Ideas and Achievements</i>. Cambridge ; New York: Cambridge University Press.</ref>
While such philosophers reasoned this possibility, they understood that capabilities to allow this was not as easy, even if they reasoned it was possible. Al-Khwarizmi, in the 8th and 9th centuries CE, and who's name became the basis for the term <i>algorithm</i>, developed rules and foundations in what became algebra. He derived linear and quadratic equations during his time in Baghdad as the lead mathematician and astronomer in the House of Wisdom, devised that many calculations could be automated through a mechanical device. The Spanish philosopher Ramon Llull also developed the idea machines could perform simple logical tasks that can be repeated and produced so that tasks could be accomplished in an automated way.<ref>For more intellectual foundations for AI, see: O’Regan, Gerard. 2008. <i>A Brief History of Computing</i>. London: Springer.</ref> Gottfried
Wilhelm Leibniz developed these ideas as he was, along with Isaac Newton, laying the foundations to what became modern calculus in the 17th century. Taking ideas from Llull, and working with engineers, Wilhem was able to help develop a basic machine that can accomplish simple calculations, or what became a sort of calculator (Figure 1). The machine was able to add, subtract, multiply, and divide. This became known as the stepped reckoner, a mechanical device that through changes in gears within the device was able to conduct basic calculations. Thomas Hobbes and René Descartes also saw that logic and mathematical reasoning could be used to automatically determine solutions for problems if a given position proved true or not. They also theorized that an algorithmic, automated approach could potentially be able to determine arguments and determine the validity of an argument using reason or mathematical logic.
Key developments during this time was a physical symbol system, that became also the basis for mathematical symbols used in algorithmic presentation today, developed. This provided the mathematical and logic foundations for presenting algorithms, along with a way to standardize their expression, that later developed AI's presentation in discussing theoretical insight.<ref>For more on the early history of algorithms and mathematical logic that created concepts of AI, see: Nilsson, Nils J. 2010. <i>The Quest for Artificial Intelligence: A History of Ideas and Achievements</i>. Cambridge ; New York: Cambridge University Press.</ref>
==Later Innovation==