Changes

Jump to: navigation, search

What are the Origins of Astronomy

103 bytes removed, 21:25, 16 September 2021
m
__NOTOC__[[File: Starry-night-1149815 960 720.jpg|thumbnail|left|250px| Starry Night]]Astronomy is has often thought of been seen as a field that has first developed from by ancient Greek scholars, but its origins most likely stretch back to recorded history. However, it We know that astronomy has a longer history and initially played a vital role in the agricultural cycle and early religions. For us, these These early innovations have led to major advancements in developing our calendar, a system of time, understanding of astronomical movements and prediction, coordinate system, and mathematical developments.<ref>For a history of astronomical developments and mathematics in Mesopotamia see: Hodgkin, Luke Howard. 2013. ''A History of Mathematics: From Mesopotamia to Modernity''. Oxford: Oxford University Press.</ref>
==Early Development==Most likely, astronomy developed when agriculture becomes significant in the Neolithic in the ancient Near East. However, we only learn about astronomy in the 3rd and particularly in the 2nd millennium BC. By this time, astronomy had developed to regulate the agricultural cycle; however, perhaps more significantly for ancient Mesopotamian societies, it was used to create a calendar utilized in the worship of gods.<ref>For information on how early observations may have developed or utilized in agriculture and religion, see: Olson, Richard. 2010. ''Technology and Science in Ancient Civilizations. Prayer Series on the Ancient World''. Santa Barbara, Calif: Praeger, Pg. 99.</ref>
Most likely astronomy begins to develop when agriculture becomes significant in the Neolithic in the ancient Near East. However, we only learn about astronomy in the 3rd and particularly in the 2nd millennium BC. By this time, astronomy had developed in part to regulate the agricultural cycle; however, perhaps more significantly for ancient Mesopotamian societies, it was used to create a calendar utilized in the worship of gods.<ref>For information on how early observations may have developed or utilized in agriculture and religion, see: Olson, Richard. 2010. ''Technology and Science in Ancient Civilizations. Prayer Series on the Ancient World''. Santa Barbara, Calif: Praeger, Pg. 99.</ref> In effect, much of the learning that had to do with the understanding of the movement of celestial bodies was generally conflated with astrology. In fact, the The signs of the zodiac were invented in Mesopotamia probably by the 3rd millennium BC.<ref>For information about the development of the Zodiac signs, see: Nardo, Don. 2009. ''Peoples and Empires of Ancient Mesopotamia''. Lucent Library of Historical Eras. Farmington Hills, MI: Lucent Books, Pg. 108.</ref> Specifically, this occurred in southern Mesopotamia, a region that eventually became synonymous with Babylonia and , by extension , the Babylonians, who provided much of our knowledge of how ancient astronomy developed there.
The first astronomers, in fact, were priests who were responsible for recording their observations on cuneiform tablets (Figure 1). Their observations were utilized as signs from the gods and that . That information was then interpreted to understand events that might affect the king and his kingdom.<ref>For information on Mesopotamian (or Babylonian) astronomers, see: Powell, Robert, and Kevin T. Dann. 2010. ''The Astrological Revolution: Unveiling the Science of the Stars as a Science of Reincarnation and Karma''. Great Barrington, MA: Lindisfarne Books.</ref> Although on the surface these seems to be nothing more than a system of superstition, the nearly continuous observation, over many centuries, of the celestial bodies led to secondary developments that have influenced our own scientific progress in the area.
Although on the surface, these seem to be nothing more than a system of superstition, the nearly continuous observation, over many centuries, of the celestial bodies led to subsequent developments that have influenced our scientific progress in the area.
Figure 1. Akkadian cuneiform text describing a possible observation of Halley’s comet, the first recorded in history (https==Major Achievements==[[File://upload.wikimedia.org/wikipedia/commons/3/38/Babylonian_tablet_recording_HalleyBabylonian tablet recording Halley's_comets comet.jpg).|thumbnail|left|255px|Cuneiform Tablet detailing Halley's Comet from 164]]
Major AchievementsHumans developed systems to understand where specific bodies, i.e., stars, moons, planets, comets, and asteroids, would interpret and provide omens to their information to their communities to both understand the past and predict the future.<ref>For Information on observations and mathematical concepts used to determine the movement of celestial bodies in Mesopotamia, see: Ossendrijver, Mathieu. 2012. ''Babylonian Mathematical Astronomy Procedure Texts''. New York, NY: Springer. http://dx.doi.org/10.1007/978-1-4614-3782-6.</ref>
The importance of celestial bodies such as the stars, moons, planets, comets, and asteroids to interpreting and providing omens meant that a system had to be developed to understand when specific bodies would be evident in the night sky and where.<ref>For information on observations and mathematical concepts used to determine movement of celestial bodies in Mesopotamia, see: Ossendrijver, Mathieu. 2012. ''Babylonian Mathematical Astronomy Procedure Texts''. New York, NY: Springer. http://dx.doi.org/10.1007/978-1-4614-3782-6.</ref> This led to the creation of creating a calendar that would be timed around the movement of the moon in particular and also a system to predict when specific events would occur, such as eclipses. The eventual calendar that emerged began to have features we now also have in our calendars.<ref>The calendar Calendar system of the Babylonians is discussed further here: Cohn, Marc. 2007. ''The Mathematics of the Calendar''. Raleigh, NC: Lulu.com, Pg. 6.</ref> The calendar was based on the lunar cycle but also the rotation of the Earth around the Sun, thus a form of lunisolar calendar, giving the calendar 12 months, with the name of the months still used in Arabic and other Near East calendars. Leap months were utilized to makeup for the shortfall in days for a given year. Because the Babylonian calendar was relatively accurate, this means many historical events that are recorded in their calendar could be dated to the exact day in some instances. For instance, we know the exact period in which Halley’s comet was observed for the first time (Figure 1). While Herodotus is often called the first historian, more accurately the Babylonians should have this title as they provide the first set of accurate ancient dates anywhere in ancient history.
Other achievements include The calendar was based on the understanding that solar lunar cycle and moon eclipses occur in periodic cycles that can be predicted. This eventually led to the system we call rotation of the Earth around the Saros systemSun, which is thus a form of a system still used to predict eclipses. In factlunisolar calendar, giving the world Saros derives from an Akkadian (i.e.calendar 12 months, with the language name of the months still used in much of Mesopotamia) wordArabic and other Near East calendars.<ref>For information on Leap months were utilized to make up for the Saros system and its development, see: Aaboe, Asger, edshortfall in days for a given year. 1991. ''Saros Cycle Dates and Related Because the Babylonian Astronomical Texts''. Transactions of calendar was relatively accurate, many historical events recorded in their calendar could be dated to the American Philosophical Society, vexact day in some instances. 81For instance, ptwe know the exact time Halley’s comet was observed for the first time (Figure 1). 6. Philadelphia: American Philosophical Society.</ref> In generalWhile Herodotus is often called the first historian, the system used by Mesopotamians, or Babylonians should have this title more specifically accurately as they provide the Babylonians, to calculate lunar orbit was considered to be highly first set of accurateancient dates anywhere in ancient history.
Additional innovations Other achievements include the idea understanding that solar and moon eclipses occur in periodic cycles that the sky can be divided into coordinates using 360 degreespredicted. In fact, this invented This eventually led to the system we call the idea of a coordinate Saros system used for any type of spatial mapping, which is a system we still useused to predict eclipses. The world Saros derives from an Akkadian (i. In Mesopotamia, a sexagesimal system for counting and recording numeric data such as coordinates made keeping track of location conveniente. This also works well for time and this Mesopotamian sexagesimal system is what we have inherited for using in the measurement of time, while also using the Babylonian system language used in our own coordinate systemsmuch of Mesopotamia) word.<ref>For information on the Babylonian sexagesimal systemsSaros system and its development, see: OreAaboe, ØysteinAsger, ed. 19881991. ''Number Theory Saros Cycle Dates and Its HistoryRelated Babylonian Astronomical Texts''. Dover Classics Transactions of Science and Mathematicsthe American Philosophical Society, v. New York: Dover81, Pgpt. 26. Philadelphia: American Philosophical Society.</ref>In general, the system used by Mesopotamians, specifically the Babylonians, to calculate lunar orbit was considered highly accurate.
The need to keep track of time, record Additional innovations include the idea that the location of celestial bodies in sky can be divided into coordinates using 360 degrees. This invented a type of coordinate systemused for any spatial mapping, which is a system we still use. In Mesopotamia, a sexagesimal system for counting and predict when events recording numeric data such as eclipses would occur meant that in Mesopotamia geometry had to be coordinates made keeping track of location convenient. This also works well developedfor a time.<ref>For information about Babylonian geometry, see : Rudman, Peter Strom, and Peter Strom Rudman. 2010. ''The Babylonian Theorem: The Mathematical Journey to Pythagoras and Euclid''. Amherst, N.Y: Prometheus Books.</ref> Measurement of angles, This Mesopotamian sexagesimal system is what we have inherited for use in the Pythagoren theorem (i.e. long before Pythagoras lived; Figure 2), and measurement of circular surfaces were already known by at least time while also using the 2nd millennium BC. As an example, the Babylonians had already known that Pi was slightly greater than 3.1 Babylonian system in valueour own coordinate systems.<ref>For information about Pi in BabyloniaInformation on the Babylonian sexagesimal systems, see: BeckmannOre, PetrØystein. 19761988. ''A Number Theory and Its History of [pi]''. ReprDover Classics of Science and Mathematics. New York: Barnes & NobleDover, Pg. 212.</ref>
==Conclusion==The need to keep track of time, record the location of celestial bodies in a type of coordinate system, and predict when events such as eclipses would occur meant that in Mesopotamia, geometry had to be well developed.<ref>For Information about Babylonian geometry, see : Rudman, Peter Strom, and Peter Strom Rudman. 2010. ''The Babylonian Theorem: The Mathematical Journey to Pythagoras and Euclid''. Amherst, N.Y: Prometheus Books.</ref> By at least the 2nd millennium BC, people already understood the measurement of angles, the Pythagorean theorem (i.e., long before Pythagoras lived; Figure 2), and measurement of circular surfaces. As an example, the Babylonians had already known that Pi was slightly greater than 3.1 in value.<ref>For Information about Pi in Babylonia, see: Beckmann, Petr. 1976. ''A History of [pi]''. Repr. New York: Barnes & Noble, Pg. 21.</ref> ====References====
<references/>
 
Updated December 15, 2018.
[[Category:Wikis]]
[[Category:History of Science and Technology]] [[Category:Ancient History]] [[Category:History of Astronomy]]
{{Contributors}}

Navigation menu